IMPROVED DEGRADATION OF N-NITROSOSOLASODINE TO PREGNANE DERIVATIVES

C.G. Bakker and P. Vrijhof*

Diosynth B.V. (Akzo Pharma)
Organic Chemical Research Department
P.O. Box 20, Oss, The Netherlands

The Solanum spirosolane alkaloid solasodine (1) is a convenient starting material for the commercial synthesis of hormonal steroids 2 . Most degradations of solasodine (1) to 3β -hydroxypregna-5,16-dien-20-one- 3β -acetate (7; 16-DPA) involve a 3,N-diacetylation, followed by a prototropic pseudomerization of the diacetate $\underline{4}$, oxidation of the 26-acetyl-aminofurosta-5,20(22)-diene derivative $\underline{15}c$ and finally cleavage of the 16β -side chain moiety of 6 by treatment with boiling acetic acid to 7.

Another route to the degradation of spirosolane alkaloids to 20-oxopregnanes is the deamination of their N-nitroso derivatives in non-aqueous medium, followed by oxidation. The yield obtained with this route is only $30\%^3$.

In this paper we describe a potentially commercial synthesis of 16-DPA $(\underline{7})$ via N-nitrososolasodine (2) and postulate a mechanism on the basis of isolated intermediates.

The N-nitroso-3-acetyl derivative $\underline{3}$ is prepared in almost quantitative yield according to known methods 4 . Conversion of $\underline{3}$ in acetic acid proceeds best under anhydrous conditions (with 5% acetic anhydride) and in the presence of a catalytic amount of p-toluenesulphonic acid at 45° C. At least 5 products are formed and after column chromatography with silica these were identified as (25R)-spirost-5-en-3 β -ol-3 β -acetate ($\underline{8}$; diosgenine acetate, 8%), (22R)-22,25-oxidofurost-5-en-3 β -ol-3 β -acetate ($\underline{9}$; 8%), (25R)-furosta-5,20(22)-diene-3 β ,26-diol-3 β ,26-diacetate ($\underline{15}$ b; 10%), furosta-5,20(22), 25-trien-3 β -ol-3 β -acetate ($\underline{16}$; 20%) and furosta-5,20(22)-diene-3 β ,25-diol-3 β ,25-diacetate ($\underline{17}$ b; 30%) $\overline{}$. In a direct synthesis starting with solasodine ($\underline{}$ 1) the N-nitrosation, 3-acetylation, pseudomerization in acetic acid, oxidation with sodium dichromate and cleavage of the 16β -side chain are executed up to 16-DPA ($\underline{7}$) pure (m.p. 172° - 174° C) with 50% yield.

More insight in the mechanism of the isomerization and a higher overall yield are obtained when the reaction is carried out in methanol.

N-nitroso-3-acetylsolasodine (3; 10,95 g.) is suspended in 60 ml dry methanol at 65° C and 0,5 g. p-toluenesulphonic acid in 10 ml dry methanol is slowly added. After nitrogen evolution has ceased a clear solution results. The solution is neutralized with 1,0 g. of sodium acetate and the methanol is evaporated.

In the residue the following products can be detected: 2% diosgenine acetate (8) and mixtures of hemi-acetals and acetals resp. 12a and 12b (30%), 13a and 13b (15%), 14a and 14b (30%)⁶. When these mixtures were dissolved in acetic acid at 20°C more polar compounds were formed, as was noticed with t.1.c.. We postulate these intermediates to be the acylated hemi-acetals 12c, 13c and 14c. However we have not been able to isolate these labile intermediates and to confirm the configuration at C-22. By heating the acetic acid solution the furostadiene derivatives 15a, 16 and 17a are formed. With this method the overall yield of the degradation of solasodine (1) to 16-DPA (7) is 60%.

Discussion.

The pseudomerization of $\underline{3}$ is an acid-catalyzed ring-opening of the N-nitroso-spiroamino-ketal function. During this reaction the OH-group of the protonated nitroso function is directly shifted to C-22 without formation of a free carbonium ion. This is concluded from the retention of configuration at C-22 (22R) observed in the isolated diosgenine ($\underline{8}$). The unstable diazonium ion $\underline{5}$ loses nitrogen and isomerization of carbonium ion $\underline{10}$ into $\underline{11}$ takes place (Demjanov rearrangement). In the weak nucleophilic acetic acid a considerable amount of ring closed products $\underline{8}$ and $\underline{9}$ is formed. With the more nucleophilic methanol the carbonium ions are rapidly captured and so ring closure is diminished. The hemi-acetals are slowly converted into the acetals with unknown configuration at C-22 (see footnote 11). The formation of carbonium ions $\underline{10}$ and $\underline{11}$ results in the 3 isomeric compounds $\underline{12a}$, $\underline{13a}$ and $\underline{14a}$, which after dissolution in acetic acid at $\underline{20}^{\circ}$ are converted into acylated hemi-acetals $\underline{12c}$, $\underline{13c}$ and $\underline{14c}$ and at higher temperatures into the furostadiene derivatives $\underline{15a}$, $\underline{16}$ and $\underline{17a}$.

Acknowledgments.

We are indebted to Dr. H.A.P. de Jongh for stimulating discussions. We thank Mr. E.M. van Doornum and Dr. C.W. Funke of Organon Analytical R & D Labs for spectral analysis and helpful discussions with interpretation.

References and footnotes.

- 1. Research Fellow 1977-1978. Present address: Department of Organic Chemistry, Roman Catholic University, Nijmegen, The Netherlands.
- 2. Reviews:
 - a. Tagungsber. Deut. Akad. Landwirtsschaftswiss. Berlin No. 27, 201-227 (1961).
 - b. K. Schreiber e.a. Proc. 2nd Intern. Congress Hormonal Steroids, Milano 1966, 343-353.
 - c. The Alkaloids, Chemistry and Physiology (Ed. R.H.F. Manske) Vol. X (1968). Chapter 1 "Steroid Alkaloids: The Solanum Group" by Klaus Schreiber.
 - d. J. Redin and O. Proano Polytecnica II (1), 249 (1970). Revista de Información Técnico-Científica Quito, Ecuador.
- 3. K. Schreiber and H. Rönsch Tetrahedron Letters 937 (1963).
 - K. Schreiber and H. Ripperger Arch. Pharm. 296, 717 (1963).
- 4. L.H. Briggs, R.P. Newbold and N.E. Stace J. Chem. Soc. 3 (1942).
- 5. Analytical details:
 - 8 M.p. 196-198°. Identical with an authentic sample.
 - $\frac{1}{9}$ M.p. $196-200^{\circ}$ (1it. $192-195^{\circ}$)⁸. M.s.: $\frac{m}{e}$ 456 (M). IR (cm⁻¹; CCl₄): 1731 (C=0 acetate).

```
PMR (\delta in ppm, TMS as internal ref., CDCl_3): 0.79 s 18-CH_3, 0.96 d (J=7 Hz) 21-CH_3, 1.04 s 19-CH_3, 1.19 s OCCH_3, 1.34 s OCCH_3, 2.02 s OCOCH_3, 4.3-4.8 m 3\alpha-H and 16\alpha-H, 5.36 broad d (J=5 Hz) 6-H.
```

- 15b M.p. 100-102° (1it. 98-100°) 9. M.s.: $\frac{m}{e}$ 498 (M). IR (cm⁻¹; CC1₄): 1732 (C=0 acetate), 1690 (C=C, Δ^{20}). PMR (idem): 0.69 s 18-CH₃, 0.92 d (J=7 Hz) 27-CH₃, 1.03 s 19-CH₃. 1.58 s 21-CH₃, 2.02 s OCOCH₃, 2.04 s OCOCH₃, 3.91 d (J=7 Hz) 26-CH₂, 4.4-4.9 m 3α-H and 16α-H, 5.36 broad d (J=5 Hz) 6-H.
- 16 M.p. 113-118° (lit. 126-131°) 10. M.s.: $\frac{m}{e}$ 438 (M). IR (cm⁻¹; CCl₄): 3080 (=CH₂), 1730 (C=0 acetate), 1690 (C=C, Δ^{20}), 1648 (C=C, Δ^{25}), 895 (=CH₂). PMR (idem): 0.70 s 18-CH₃, 1.03 s 19-CH₃, 1.60 s 21-CH₃, 1.72 s 27-CH₃, 2.02 s OCOCH₃, 4.4-4.9 m 3 α -H and 16 α -H, 4.70 broad s 26-CH₂=, 5.38 broad d (J=5 Hz) 6-H.
- 17b M.p. 126-130°. M.s.: $\frac{m}{e}$ 498 (M). IR (cm⁻¹; CCl₄): 1730 (C=0 acetate), 1691 (C=C, Δ^{20}) PMR (idem): 0.69 s 18-CH₃, 1.04 s 19-CH₃, 1.44 s OC(CH₃)₂, 1.58 broad s 21-CH₃, 1.98 s OCOCH₄, 2.03 s OCOCH₄, 4.4-4.9 m 3α-H and 16α-H, 5.35 broad d (J=5 Hz) 6-H.
- 6. Only the relevant spectroscopic data are given. Further analogous to the structures given in footnote 5.

Mixture 12a and 12b:

M.s.: $\frac{m}{e}$ 470 (M- H₂0 or CH₃0H). IR(cm⁻¹; CCl₄): 3608 (OH), 2833 (OCH₃), 1103 (OCH₃). PMR (δ in ppm, TMS as internal ref., CDCl₃): 3.12 s 22-OCH₃ (30% present), 3.29 s 26-OCH₃, 3.18 probably d, hidden by singlets 26-CH₂.

Mixture 13a and 13b:

M.s.: $\frac{m}{e}$ 470 (M), $\frac{m}{e}$ 456 (M), $\frac{m}{e}$ 438 (M- H₂0 or CH₃OH). IR (idem): 3607 (OH), 3080 (=CH₂), 1649 (C=C, Δ^{25}). PMR (idem): 1.75 broad s 27-CH₃, 3.14 s 22-OCH₃ (30% present), 4.65 broad s 26-CH₂=.

Mixture 14a and 14b:

M.s.: $\frac{m}{e}$ 470 (M- H₂0 or CH₃0H). IR (idem): 3608 (OH), 2834 (OCH₃), 1091 (OCH₃). PMR (idem): 1.14 s OCCH₃, 1.17 s OCCH₃, 3.15 and 3.17 2s 22-OCH₃ (90% present) 11, 3.28 s 25-OCH₃.

- 7. $\underline{15a}$. M.p. $97-100^{\circ}$. M.s.: $\frac{m}{e}$ 470 (M). $\underline{17a}$. M.p. $129-132^{\circ}$. M.s.: $\frac{m}{e}$ 470 (M). Structural data analogous to 12ab, 14ab, 15b and 17b.
- 8. Y. Sato, H.G. Latham, L.H. Briggs and R.N. Seelye J. Amer. Chem. Soc. 79, 6089 (1957).
- 9. J.B. Ziegler, W.E. Rosen and A.C. Shabica J. Amer. Chem. Soc. 77, 1228 (1955).
- 10. F.C. Uhle J. Org. Chem. 32, 792 (1967).
- 11. Probably a mixture of 22S and 22R derivative. The almost complete formation of the acetal $\underline{14}b$ is incomprehensible.

(Received in UK 25 September 1978)